
aqueue

Tim Martin

Oct 17, 2022





CONTENTS

1 Installation 3

2 Getting Started 5

3 Example 7

4 Items 9

5 Starting your queue 11

6 Sharing state 13

7 Persisting state 15

8 Other cool things 17

i



ii



aqueue

aqueue is an async task queue with live progress display.

You put items in, and they get processed, possibly creating more items which get processed, and so on, until all items
are completed. A typical use case would be to scrape a website.

Note: aqueue, or any asynchronous framework, is only going to be helpful if you’re performing I/O-bound work.

CONTENTS 1



aqueue

2 CONTENTS



CHAPTER

ONE

INSTALLATION

aqueue is a Python package hosted on PyPI. The recommended installation method is pip-installing into a virtual
environment:

pip install aqueue

3

https://pypi.org/project/attrs/
https://pip.pypa.io/en/stable/


aqueue

4 Chapter 1. Installation



CHAPTER

TWO

GETTING STARTED

There’s two things you need to do to use aqueue:

1. Implement your Item subclasses.

2. Start your queue with one of those items.

5



aqueue

6 Chapter 2. Getting Started



CHAPTER

THREE

EXAMPLE

import aqueue

class RootItem(aqueue.Item):
async def process(

self, enqueue: aqueue.EnqueueFn, set_desc: aqueue.SetDescFn
) -> None:

# display what we're doing in the worker status panel
set_desc("Processing RootItem")

# make an HTTP request, parse it, etc
...

# when you discover more items you want to process, enqueue them:
for _ in range(5):

enqueue(ChildItem())

async def after_children_processed(self) -> None:
# run this method when this Item and all other Items it enqueued are done
print("All done!")

class ChildItem(aqueue.Item):

# track the enqueueing and completion of these items in the overall panel
track_overall: bool = True

async def process(
self, enqueue: aqueue.EnqueueFn, set_desc: aqueue.SetDescFn

) -> None:
set_desc("Processing ChildItem")

if __name__ == "__main__":
aqueue.run_queue(

initial_items=[RootItem()],
num_workers=2,

)

7



aqueue

8 Chapter 3. Example



CHAPTER

FOUR

ITEMS

Items are your units of work. They can represent whatever you’d like, such as parts of a website that you’re trying to
scrape: an item for the index page, for subpages, for images, etc.

Each item must be an instance of a subclass of aqueue.Item. Imperatively, you must implement the aqueue.Item.
process method, which defines the work of the item, such as making an HTTP request, parsing it, downloading
something, etc.

Note: aqueue is built on top of Trio, and, therefore, you may only use Trio-compatible async primitives inside Item
methods.

Fundamentally, items can make other items to be processed later. To enqueue them, use the enqueue method passed
to the process method.

As a rule of thumb, you should make a new item class whenever you notice a one-to-many relationship. For example,
“this one page has many images I want to download”.

9

https://trio.readthedocs.io/en/stable/index.html


aqueue

10 Chapter 4. Items



CHAPTER

FIVE

STARTING YOUR QUEUE

Once you’ve implemented some aqueue.Item classes, start your queue to kick things off.

11



aqueue

12 Chapter 5. Starting your queue



CHAPTER

SIX

SHARING STATE

Often, its beneficial to share state between the items. Using the website scrape example again, you may want to keep
track of the URLs you’ve visited so you don’t scrape them twice.

If this is needed, simply keep a global set/dict/list and store a key for the item. For example, a URL string may be a
good key.

If you don’t want to or can’t use a global variable, consider a contextvars.ContextVar.

13

https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar


aqueue

14 Chapter 6. Sharing state



CHAPTER

SEVEN

PERSISTING STATE

During development, its probably likely that your program will crash after doing some work. For example, maybe your
HTTP request timed out or you had a bug in your HTML parsing.

It’s a shame to lose that work that’s been done. So, if you’re looking for a really handy way to persist state across runs,
check out the built-in shelve module. It’s like a dict that automatically saves to a file each time you set a key in it.

15

https://docs.python.org/3/library/shelve.html#module-shelve


aqueue

16 Chapter 7. Persisting state



CHAPTER

EIGHT

OTHER COOL THINGS

The API is fully docstringed and type-hinted

17


	Installation
	Getting Started
	Example
	Items
	Starting your queue
	Sharing state
	Persisting state
	Other cool things

